Installation Guide
This guide walks you through installing Treadmill and its dependencies on various platforms.
System Requirements
Minimum Requirements
Python 3.8 or higher
PyTorch 1.12.0 or higher
4GB RAM (8GB recommended)
CUDA-compatible GPU (optional but recommended for deep learning)
Supported Platforms
✅ Linux (Ubuntu 18.04+, CentOS 7+, etc.)
✅ macOS (10.15+)
✅ Windows 10/11
✅ Google Colab
✅ Kaggle Notebooks
Installation Methods
Method 1: From PyPI (Recommended)
The easiest way to install Treadmill is from PyPI:
# Basic installation
pip install pytorch-treadmill
Advantages: - Quick and simple installation - Stable, tested releases - Automatic dependency management - Perfect for most users
With Optional Dependencies:
# With examples dependencies (torchvision, scikit-learn)
pip install "pytorch-treadmill[examples]"
# With full dependencies (visualization tools, docs, etc.)
pip install "pytorch-treadmill[full]"
# For development
pip install "pytorch-treadmill[dev]"
Method 2: From Source (Development)
This method gives you access to the latest features and allows easy contribution.
# Clone the repository
git clone https://github.com/MayukhSobo/treadmill.git
cd treadmill
# Install in development mode
pip install -e .
Advantages: - Latest features and bug fixes - Easy to modify and contribute - Full access to examples and documentation
Method 3: Install with Optional Dependencies (Development)
For different use cases, you can install Treadmill with various optional dependencies:
Basic Installation:
pip install -e . # Core dependencies only
With Examples:
pip install -e ".[examples]" # Includes torchvision, scikit-learn
With Full Features:
pip install -e ".[full]" # All optional dependencies
For Development:
pip install -e ".[dev]" # Development tools (pytest, black, mypy, etc.)
Dependency Details
Core Dependencies (always installed):
torch>=1.12.0 # PyTorch framework
torchvision>=0.13.0 # Computer vision utilities
numpy>=1.21.0 # Numerical computing
rich>=12.0.0 # Beautiful terminal output
torchinfo>=1.7.0 # Model summary information
scikit-learn>=1.0.0 # Machine learning utilities
Optional Dependencies:
examples: Additional dependencies for running examplesfull: Complete feature set including visualization toolsdev: Development and testing tools
Virtual Environment Setup
We highly recommend using a virtual environment to avoid dependency conflicts.
Using venv (Built-in)
# Create virtual environment
python -m venv treadmill_env
# Activate (Linux/Mac)
source treadmill_env/bin/activate
# Activate (Windows)
treadmill_env\Scripts\activate
# Install Treadmill
cd treadmill
pip install -e .
Using conda
# Create conda environment
conda create -n treadmill python=3.9
conda activate treadmill
# Install PyTorch (recommended to use conda for PyTorch)
conda install pytorch torchvision torchaudio -c pytorch
# Install Treadmill
cd treadmill
pip install -e .
GPU Support Setup
For optimal performance, especially with large models, GPU support is highly recommended.
CUDA Installation
Step 1: Check GPU Compatibility
# Check if CUDA is available
nvidia-smi
Step 2: Install CUDA-enabled PyTorch
Visit PyTorch website for the latest installation commands.
# Example for CUDA 11.8 (check website for latest)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Step 3: Verify Installation
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA devices: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.get_device_name()}")
Verification
After installation, verify that everything works correctly:
Quick PyPI Installation Test:
# Install from PyPI
pip install pytorch-treadmill
# Test basic import
python -c "import treadmill; print(f'Treadmill {treadmill.__version__} installed successfully!')"
Basic Verification:
import treadmill
print(f"Treadmill version: {treadmill.__version__}")
# Test basic functionality
from treadmill import TrainingConfig, Trainer
print("✅ Import successful!")
Complete Test:
import torch
import torch.nn as nn
from treadmill import Trainer, TrainingConfig
# Create a simple test model
model = nn.Linear(10, 1)
# Create dummy data
X = torch.randn(100, 10)
y = torch.randn(100, 1)
dataset = torch.utils.data.TensorDataset(X, y)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
# Test configuration
config = TrainingConfig(epochs=1, device="cpu")
# Test trainer creation
trainer = Trainer(
model=model,
config=config,
train_dataloader=dataloader
)
print("✅ Trainer creation successful!")
Troubleshooting
Common Installation Issues
Issue 1: PyTorch Version Compatibility
ERROR: No matching distribution found for torch>=1.12.0
Solution:
# Update pip first
pip install --upgrade pip
# Install specific PyTorch version
pip install torch==1.12.0 torchvision==0.13.0
Issue 2: CUDA Version Mismatch
UserWarning: CUDA initialization: Found no NVIDIA driver
Solution:
Check CUDA driver installation:
nvidia-smiInstall matching CUDA toolkit version
Reinstall PyTorch with correct CUDA version
Issue 3: Permission Denied (Linux/Mac)
PermissionError: [Errno 13] Permission denied
Solution:
# Use --user flag
pip install --user -e .
# Or fix permissions
sudo chown -R $USER ~/.local/
Platform-Specific Notes
Windows
Use Command Prompt or PowerShell as Administrator
Consider using Windows Subsystem for Linux (WSL2)
Visual Studio Build Tools may be required for some packages
# Install Visual Studio Build Tools if needed
# Download from: https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio
macOS
Xcode Command Line Tools required
Consider using Homebrew for Python installation
# Install Xcode Command Line Tools
xcode-select --install
# Install Python via Homebrew (optional)
brew install python@3.9
Google Colab
Treadmill works out of the box on Google Colab:
# In a Colab cell (PyPI installation - recommended)
!pip install pytorch-treadmill
# Or from source for latest features
!git clone https://github.com/MayukhSobo/treadmill.git
%cd treadmill
!pip install -e .
Docker Installation
For containerized environments, we provide Docker support:
# Pull the Docker image (when available)
docker pull treadmill/treadmill:latest
# Or build from source
git clone https://github.com/MayukhSobo/treadmill.git
cd treadmill
docker build -t treadmill .
Next Steps
After successful installation:
📖 Read the Quick Start Guide guide
🏃♀️ Try the Complete Image Classification Tutorial tutorial
🔍 Explore the MNIST Convolutional Networks example
📚 Check the Trainer API Reference API reference
If you encounter any issues not covered here, please:
Check our GitHub Issues
Create a new issue with your system details and error messages
Join our community discussions for help